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THE DESIGN OF VARIOUS TYPES OF AIR BEARINGS
FOR SIMULATING FRICTIONLESS ENVIRONMENTS

by
Kenneth W. Stark
Goddard Space Flight Center

SUMMARY

Several types of air bearings are discussed and analyzed
which can effectively simulate a frictionless environment for
testing space vehicle instruments and control systems. A spher-
ical dual-flow bearing, designed for a load of 15 pounds and em-
ploying an input pressure of about 4.5 psi, has been operated with
an effective coefficient of friction of only 0.00000406. However,
unless all externally applied torques as well as the center of
gravity of the test fixture are exactly at the bearing's center of
rotation, it will precess. This is overcome in a cylindrical
dual-flow bearing designed on the same principle. A spherical
mono-flow bearing and a flat plate mono-flow bearing, which will
bear loads of 700 and 400 pounds respectively with low input
pressures, are also discussed. Plots of theoretical and actual
performance are given, and fabrication techniques are described.
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THE DESIGN OF VARIOUS TYPES OF AIR BEARINGS
FOR SIMULATING FRICTIONLESS ENVIRONMENTS

by
Kenneth W, Stark
Goddard Space Flight Centeyr

INTRODUCTION

Precision instruments and control systems designed for space vehicles and stabil-
ized orbiting spacecraft must be tested and evaluated in a simulated space environment.
In this connection it is necessary to find a means of simulating a frictionless environ-
ment, The application of a properly designed air bearing is a highly feasible approach
toward creating this environment because the frictional effects of an air bearing can be
considered negligible.

This report describes the design and applications of several types of flat and spher-
ical air bearings. The major discussion is devoted to a dual-flow spherical air bearing:
a spherical mono-flow and a flat mono-flow bearing are treated in less detail.

SPHERICAL DUAL-FLOW AIR BEARING

The spherical dual-flow air bearing is so named because air flows into the bearing
through capillary tube orifices flush with its inner socket surface between the two ex-
hausts or outlets. One of the outlets is at the outer circumference of the bearing and the
other is at the center where the load-supporting rod joins the bearing sphere (Figure 1).

The application of this type of air bearing was introduced when accurate evaluation
of various satellite spin reduction mechanisms required an essentially frictionless en-
vironment. This environment can be approached with the air bearing, but ideally the en-
tire system should be operated in a vacuum, since the drag effect of air on the device
being tested tends to obviate the frictionless condition.
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Figure 1 —Configuration and pressure distribution
of the spherical dual-flow bearing
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An interesting feature of the spherical dual-flow bearing is the small air pressure
and flow required to support a given load. The actual design calculations given below,
which demonstrate the feasibility of such a system, were based on locating the capil-
laries so that the flow toward the bearing center equals the flow outward. Figure 1
shows the flow conditions and pressure distribution on which the design was based.

Determination of the Radii

The flow of air through the slot (Figure 1) between the bearing sphere and base is
given by the familiar formula*

_ _APbh3
= 124 (1)

where, in this case,
AP = the overall pressure differential causing the flow (psi),
b = 27r = the "width" of the circular slot (inches),

h = h, = the height of the slot (inches),

*Fuller, D. D., "Theory and Practice of Lubrication for Engineers,” New York: Wiley, 1956.
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t = dr = the elemental length of the slot (inches),

© = the viscosity of the air (reyns¥*).

Note that AP is the same in both directions, being the drop from the initial pressure to
the outside pressure, and h is a geometrical constant of the system. The capillaries
are equally spaced around the bearing center at a distance R’; hence the flows may be
considered radially symmetrical. We desire equal flows toward the center and the out-
side of the bearing; thus

APbh3 AP b,h3

LT U S U S
from which
dr dr
1 2
!'l = 1'2 (2)

Integrating Equation 2 from the capillary orifices to the outlets (Figure 1), we have

R R’
J’ drl _ J‘ dr2
’ 1'1 1 rZ
R 7

IR (3)

R'—2

Thus for R = 2 inches (the design value), R’ = 0.70 inch.

Determination of the Preséure Distribution

For flow from the orifices to the outside of the bearing, the pressure decreases with
increasing radius; thus, from Equation 1,

_ -12Qu dr
d = 27rh3 4)

Integrating this equation yields

P, T ~klinr +Cl y (5)

o1 =1 Ib-sec
reyn =
4 in?




where

The constant C, is determined from the boundary conditions: when r =R, then p, =0
and

6Qu
1 - 7h 3

InR = klnR .

Equation 5 then becomes

R
p, = kln. (6)

For inward flow from the orifices to the center outlet, a similar analysis shows that

p, = klnr +C,. (7

Applying the boundary conditions r = 1/4 and p, = 0 then gives

1
c, = -klnyg

2

and thus

r
P, ~ klnm = klndr . (8)

Total Flow and Peak Pressure

We now desire to calculate the peak pressure P, required at the input orifices to
support the load on the bearing sphere. The design load is, in this instance,
W = 15 pounds. Let A = 27rdr represent the flat projection of the bearing sphere sur-
face area; then, since dW = pdaA,

’

R R
W = J p, 2nrdr + j p, 27rdr ,
1

]

R 7

where p, and p, are the pressure distributions as given by Equations 6 and 8.

061-D
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Thus

R R
6 R 6
W - 2WI % a2 rdr 2WJ % (1n 4e) rdr . (9)
R' % 7h

Next an expression for Q in terms of P, must be found. From Equation 6, since
p, =P, when r = R',
Powh3

Q= G,uln%, ) (10)

The use of this expression reduces Equation 9 to

R R’
277P0 R
W = R rln‘r‘dr‘r rin4rdr | .
In> R’ %

Rr

Integrating, solving for P, and substituting the numerical values of W, R, and R’ then
gives

P, = 2.11 psi.

0

The flow Q can be calculated from Equation 10; with P, = 2.11 psi, » = 2.6 x 10°°
reyn (at 70°F), R = 2 inches, and R’ = 0.70 inch, the result is

i3
Q = 4.04 x 108 13 é:—c ) (11)

The purpose of using capillary tubes is to limit the flow of air when the sphere is
not seated in the bearing. The pressure drop across these capillaries can be determined

from the familiar flow equation:

AP, 7RAN
20 = Qe * 8ut, . (12)

where, in the present case, AP_ is the pressure differential, R_ = 0.004 inch and



g, = 0,281 inch are the radius and length of the capillary, and N = 6 is the number of

-4

capillaries. The result is

AP, = 1.21 Q,,, -

e

Note that Ap_ is a function of h., Figure 2 shows both p_ and h plotted against Q,_,.

The total pressure differential required across the entire bearing (from entrance to
exit) is, of course,

APtc:bt = PO t APc *

The constant k in Equations 6 and 8 can now be evaluated by substituting the
values of Q (from Equation 11) and h. For the particular bearing under discussion,
h =-h, = 0.001 inch; this results in the pressure distributions

a6} /

/ AP (ACROSS

/ CAPILLARY)

80 /

PRESSURE DROP
ACROSS CAPILLARY,

6.4 } .0032} APe /
5 /
&
o  48}F .0024} y
L]

h (in)
~N

AIR FILM THICKNESS, h

3.2pF .0016

1.6 .0008

1 1
.08 .16 .24 .32 40

Quor (ft3/min)

Figure 2~ Pressure drop AP, ocross capillary and air film thickness h
as functions of total flow Q,,, for the spherical dual-flow bearing
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R
2 1In —

r y

Py
p, = 21In —1—;? ,
which are plotted in Figure 3.
Coefficient of Friction
The theoretical coefficient of friction of the bearing was calculated by dividing the

force F required to rotate the bearing at a given speed by the normal load on the bear-
ing. The force F may be obtained from the basic equation

where A is the area of "contact' and v is the average linear velocity of points on the

R = 0.70 inch

20pP
1.6 p

1.2p

PRESSURE p (psi}

1 1
0 4 8 1.2 1.6 2.0

RADIUS r (in)

4] A H

Figure 3 —Radial distribution of pressure within the spherical
dual-flow bearing
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rotating sphere. For the bearing under consideration A = 3.32 in?, v = 7.06 in/sec (at
60 rpm), and . and h = h, have the values given earlier; thus

F = 6.1 x107% 1b.

Then, with the normal force n = W = 15 pounds, the coefficient of friction is

= 0.00000406.

_F
f=x

This shows that, if external drag is neglected, the bearing very closely approaches a
frictionless test facility.

Fahrication and Testing

The bearing was fabricated of brass. After being turned on a lathe, the two surfaces
were lapped to remove all irregularities and form a smooth surface. The completed
bearing was then mounted in a stand, with the 15-pound load suspended from the center,
for performance testing at various pressures. Two methods were used to measure the
various parameters; one employed a mechanical dial indicator and the other was an
electrical method employing a capacitance bridge.

In the first method the bearing and dial indicator were mounted on a stable base.
With no air flow through the bearing and a 15-pound weight attached to the bearing, the
indicator was adjusted to read zero with its arm on top of the bearing. Air was then
introduced at the required input pressure, and the distance the bearing lifted off its seat
was noted on the indicator. This measurement was repeated several times. Under the
design conditions ( 4P, , ~ 4.5 psi) the indicator measured an average of 0.0008 inch.

The electrical check method employed a capacitance bridge circuit in which the
bearing itself was considered a capacitor with air as the dielectric. As the inlet air
pressure was changed, the thickness h of the air film varied, changing the value of the
capacitance. The air film thickness was calculated from the measured capacitance for
several values of input pressure. In Figure 4 the actual film thickness h and AP are
plotted against the "actual” total flow (calculated from the other measured values but not
measured with a flowmeter). For AP, . % 4.5 psi the film thickness was 0.0007 inch.

Figure 5 shows the physical configuration of the air bearing including the air inlets
in which the control capillaries are located,

nar-n
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Figure 4 — Actual (measured) air film thickness h and pressure drop
across the capillaries as functions of total flow Q,, for the spherical
dual-flow bearing
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i

Figure 5— The spherical dual-flow bearing: socket (left) showing air inlets (small holes) in which
the capillary orifices are located; and sphere (right) with load-carrying shaft removed.
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CYLINDRICAL DUAL-FLOW AIR BEARINGS

In the process of using the spherical dual-flow air bearing external torques were
applied to a test fixture to study the characteristics of the bearing with a rotating body
on it. If the torques and center of gravity of the test fixture were not exactly at the cen-
ter of rotation of the bearing, precession of the rotating sphere would develop. For
these particular applications, a cylindrical dual-flow bearing was built on the same
principle as the spherical one. However, when the spherical bearing was properly
utilized various impulse and momentum characteristics for rotating bodies could be

observed and measured.

One of the main advantages for using the dual flow air bearing is that the center of
gravity of the system is a considerable distance below the center of curvature of the

bearing, providing greater stability.

SPHERICAL MONO-FLOW AIR BEARING

The basic configuration of a spherical mono-flow air bearing can be designed on the
basis of a single input capillary opening into an air pocket for maximum supporting
capacity, with the outer circumferential rim of the bearing providing the flow control.
The cross section and pressure distribution of such a bearing are shown in Figure 6.

i/ o

Po | {
Q'/ L Rl‘.l —R—m
dr -

Ry—{

R {

Figure 6 — Configuration and pressure distribution of the spherical mono-flow bearing
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This bearing, developed for use in testing the control system of an artificial satel-
lite, was required to support a load of 700 pounds. The large size, weight, and angle of
swing made the use of a dual-flow bearing impractical.

Determination of the Pressure Distribution

Since the use of high pressures would complicate the calculations by introducing
compressibility effects, the simplest approach to design in this case was to assume a
low inlet pressure and then calculate the various radii, rather than the converse.

An examination of Figure 6 with Figure 1 will show that the flow of air is again
given by Equation 1 and the element of pressure along the slot by Equation 4, the
nomenclature being the same. Thus, the pressure at any point in the slot is

dr
P = —ka

= =-klnr +C.

To evaluate C, we impose the outer boundary conditions p =0, r = R,:
0 = =-klInR, +C,

C = kiInR, .

Thus
R2

p = kln—/( (13)

where, as in the earlier case,
6Qu
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Total Fiow and Peak Pressure

Now an expression for ¢ may be obtained from Equation 13 by imposing the inner
boundary conditions r = R;, p = P;; this results in
P,7h?
= T/ R, (14)

R
6 In—2%
R,

Next the value of P, required to support the load W may be obtained from the expression

R,
W = Po"R12 +J- pda

where dA = 27rdr is the elemental flat projection of the flow-controlling rim area.
Substituting from Equation 13 and 14, integrating, and solving for P, gives

W "2 | (15)

This value of P, may now be substituted into Equation 14 to give the flow of air required.

Since the curvatures of the sphere and socket are equal, the film thickness h varies with
r; the average value of h was found to be 0.000673 inch. This results in

Q¢ = 169 in?*/min.

Determination of the Bearing Radii

Finally, to determine the bearing size, the values P, = 5 psi, W = 700 pounds, and

R, = 7 inches, are chosen and substituted into Equation 15; the result is

2

R, = 6.27 inches.

The design of the single capillary tube is obtained from Equation 12 with N = 1.
First solve the equation for € :
AP, TR
b = 780

06I-D
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Let ¢ = 30 R, &P, = 4 psi,and Q = 2.81 in3/sec. Then R, = .00519 inches, and
g, = -156 inches.

Fabrication and Testing

This bearing was constructed of aluminum and the bearing surfaces were given a
Sanford anodic coating for hardness and for increased resistance to the scratching which
may result from abrasives or improper handling. The two surfaces were lapped to mir-
ror smoothness. It is most important that the bearing be operated in a clean area free
of grit and contamination. Before use, the mating surfaces must be cleaned with a
solvent which leaves no residue.

Figures 7 and 8 are photographs of the bearing showing the orifice and the mating
surfaces.

The only operational test made on this bearing consisted of plotting the speed and
torque vs. time for a given total bearing inertia (Figure 9).

Figure 7 — Mating surfaces of the spherical mono-flow bearing
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SPEED (rps) AND TORQUE (in-0z)

f=142 SLUG-IN?

FRICTIONAL #
TORQUE

u Y :
80 100 120 140

TIME (min)

Figure 9 — Coasting characteristics of the spherical mono-flow bearing
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FLAT PLATE MONO-FLOW AIR BEARING

A flat plate mono-flow air bearing (Figures 10 and 11) was designed on the same
basis as the spherical mono-flow bearing except that the load was assumed to be 400
pounds. This type of bearing has one-plane rotational motion; however, it is very
important that the center of mass of the test object be located at the center of rotation
of the bearing, and also that the base supporting structure be perfectly level.

Other modifications can be made to this bearing. One is to add sidewalls with ori-
fices, making a cylindrical bearing and preventing any sliding motion due to uneven
torque application or an uneven base structure. Another modification would be to utilize
the existing air flow to center the bearing by redirecting the exhaust air to act on the
side wall of the bearing.

The procedures for hardening and lapping the surfaces were the same as for the
spherical mono-flow bearing.

U I IRRA I TR a AR R I RIS
gt L L T B T g g iy

T

Figure 10— The two components of the flat plate mono—flow bearing
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T T T LTttt 1t st
AT g vy

ﬂ

Figure 11 — The flat plate mono-flow bearing, assembled

OPERATIONAL CONSIDERATIONS

Many operational problems are eliminated when a dry, filtered air supply is used.
This prevents such contaminants as water, oil, and grit from collecting in the air gap
and degrading performance,.

Care must be taken, when there is a requirement for frequent intermittent use of the
bearing, to provide means of maintaining a space between sphere and socket when the air
is shut off. This will prevent accidental damaging of the bearing surfaces.

NASA-Langley, 1882 G-15H0
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